
内容简介
关于我

谭小凡

软件开发工程师，主要从事RISCV软件开发与移植工作

关于内容

在进行发行版软件包的编译、根文件系统构建以及开发板镜像制作时，开发人员常常面临如下痛点：目

标板硬件稀缺或性能不足、不同开发者之间环境不统一导致复现困难、反复试错消耗大量时间。为了解
决这些问题，本次议题聚焦 qemu-user 与 docker 的协同应用，为跨架构容器制作、软件包编译、开
发板系统的制作提供高效的解决方案。

qemu-user 作为跨架构用户态软件的模拟工具，可在 x86 架构上通过翻译目标指令与系统调用的机制直
接运行 RISCV、ARM、MIPS 等目标架构的二进制程序，与 docker 配合则能结合容器化技术，直接在
x86架构的开发机上便捷运行目标架构的容器。

议题将从实际开发场景出发，逐步讲解如何安装qemu-user、执行目标架构的容器、制作目标架构的发
行版容器、快速移植开发板系统等问题。帮助开发人员跳过不必要的试错环节，提升软件和系统移植的

效率。

af://n3170

模式 架构要求 功能
性
能

qemu-system +
kvm

Host和Guest同
架构

虚拟机运行完整操作系统
很

好

qemu-system 可跨架构 模拟器运行完整操作系统
较
差

qemu-user 可跨架构
模拟器运行用户态程序，将系统调用翻译到

Host Kernel上
中

等

QEMU常见的三种工作场景

在跨架构模拟执行时，通常qemu-user的性能优于qemu-system的性能。

因为 qemu-system 内需运行一个完整的操作系统内核，当不使用KVM加速时，就只能使用TCG引擎来
做二进制翻译，性能较差。

qemu-user 只负责用户态程序的模拟，拦截Guest Program的syscall，将其翻译为对本机内核的系统调
用。虽然也需要使用TCG引擎做二进制翻译，但无需在QEMU中模拟一个完整的内核，所以性能相对
qemu-system要好一些

af://n3183

编译软件包 qemu-system-riscv64 qemu-user-riscv64

bash-5.2.15-9.oe2403
real 10m17.595s
user 22m45.558s
sys 11m30.601s

real 7m28.796s
user 17m0.117s
sys 0m52.560s

nginx-1.24.0-1.oe2403
real 6m17.300s
user 39m10.105s
sys 12m59.054s

real 3m8.487s
user 19m45.362s
sys 0m49.696s

模拟执行方式的性能测试
在openEuler-24.03-lts下，通过rpmbuild构建软件包，比较qemu-system和qemu-user的性能差距

af://n3209

解释执行静态程序

注

静态链接的C程序只依赖于内核的syscall，不依赖于其他的运行时环境

qemu-riscv64 是riscv64作为target的qemu-user

qemu-riscv64对用户态程序hello做模拟执行，将对riscv64内核的系统调用翻译为对本机的系统调
用

xiaofan@xfan-ubuntu2404-devel:~/workspace/riscv-compile$ cat hello.c

#include <stdio.h>

int main(void)

{

 printf("hello world\n");

 return 0;

}

xiaofan@xfan-ubuntu2404-devel:~/workspace/riscv-compile$ riscv64-linux-gnu-gcc -

static hello.c -o hello

xiaofan@xfan-ubuntu2404-devel:~/workspace/riscv-compile$ qemu-riscv64 ./hello

hello world

af://n3225

解释执行动态程序

这里遇到第一个问题，缺少riscv64的动态链接器。

动态链接的程序需要动态链接器才能运行，这个动态链接器的路径是以绝对路径的形式写到ELF文件的
program header中

xiaofan@xfan-ubuntu2404-devel:~/workspace/riscv-compile$ cat hello.c

#include <stdio.h>

int main(void)

{

 printf("hello world\n");

 return 0;

}

xiaofan@xfan-ubuntu2404-devel:~/workspace/riscv-compile$ riscv64-linux-gnu-gcc

hello.c -o hello

xiaofan@xfan-ubuntu2404-devel:~/workspace/riscv-compile$ qemu-riscv64 ./hello

qemu-riscv64: Could not open '/lib/ld-linux-riscv64-lp64d.so.1': No such file or

directory

xiaofan@xfan-ubuntu2404-devel:~/workspace/riscv-compile$ readelf -l hello

Elf file type is DYN (Position-Independent Executable file)

Entry point 0x5b0

There are 10 program headers, starting at offset 64

Program Headers:

 Type Offset VirtAddr PhysAddr

 FileSiz MemSiz Flags Align

 PHDR 0x0000000000000040 0x0000000000000040 0x0000000000000040

 0x0000000000000230 0x0000000000000230 R 0x8

 INTERP 0x0000000000000270 0x0000000000000270 0x0000000000000270

 0x0000000000000021 0x0000000000000021 R 0x1

 [Requesting program interpreter: /lib/ld-linux-riscv64-lp64d.so.1]

 RISCV_ATTRIBUT 0x0000000000001033 0x0000000000000000 0x0000000000000000

 0x0000000000000053 0x0000000000000000 R 0x1

 LOAD 0x0000000000000000 0x0000000000000000 0x0000000000000000

 0x000000000000073c 0x000000000000073c R E 0x1000

 LOAD 0x0000000000000db0 0x0000000000001db0 0x0000000000001db0

 0x0000000000000258 0x0000000000000260 RW 0x1000

 DYNAMIC 0x0000000000000dc8 0x0000000000001dc8 0x0000000000001dc8

 0x00000000000001f0 0x00000000000001f0 RW 0x8

 NOTE 0x0000000000000294 0x0000000000000294 0x0000000000000294

 0x0000000000000044 0x0000000000000044 R 0x4

 GNU_EH_FRAME 0x00000000000006cc 0x00000000000006cc 0x00000000000006cc

 0x000000000000001c 0x000000000000001c R 0x4

 GNU_STACK 0x0000000000000000 0x0000000000000000 0x0000000000000000

 0x0000000000000000 0x0000000000000000 RW 0x10

 GNU_RELRO 0x0000000000000db0 0x0000000000001db0 0x0000000000001db0

 0x0000000000000250 0x0000000000000250 R 0x1

af://n3237

但是在x86-64的环境下，并不存在/lib/ld-linux-riscv64-lp64d.so.1这个文件，所以无法直接执行动态
链接的程序。

好在这个文件名不会和x86-64的动态链接器名字冲突，所以我们可以从riscv64的sysroot中拷贝这个文件
到系统的/lib目录下

除了动态链接器以外，还需要一个 libc.so.6 这个动态库。这个名字和x86-64环境中的libc的名字相同，
我们难以直接通过cp指令拷贝riscv64的libc.so.6到系统动态库的目录下。但我们可以设置
LD_LIBRARY_PATH来帮助动态链接器搜索到riscv64版本的libc.so.6。

至此成功通过qemu-user运行了一个riscv64的动态链接的程序。

xiaofan@xfan-ubuntu2404-devel:~/workspace/riscv-compile$ sudo cp /usr/riscv64-

linux-gnu/lib/ld-linux-riscv64-lp64d.so.1 /lib

xiaofan@xfan-ubuntu2404-devel:~/workspace/riscv-compile$ qemu-riscv64 ./hello

./hello: error while loading shared libraries: libc.so.6: cannot open shared

object file: No such file or directory

xiaofan@xfan-ubuntu2404-devel:~/workspace/riscv-compile$

LD_LIBRARY_PATH=/usr/riscv64-linux-gnu/lib qemu-riscv64 ./hello

hello world

字段 值 解释

name qemu-riscv64

支持多个
binfmt_misc规
则，使用名字作
为ID

linux的binfmt_misc机制
我们现在已知了两个问题

执行目标可执行文件时，常会遇到宿主机上缺少动态链接器和依赖的so库等问题，虽然可以通过一
些技术手段来满足，但实际操作过程很麻烦。

执行目标可执行文件时，需要手动执行qemu-riscv64这个可执行文件，比较麻烦。

考虑这两个问题的解决办法

chroot到一个目标架构的根文件系统中，在这个根文件系统中的动态链接器、动态库都是目标架构
的文件

考虑使用linux的binfmt_misc机制，Linux 的 binfmt_misc 允许注册多条规则（每条包含
magic、 mask、 interpreter 等），内核在 exec 某个文件时会用规则的 mask 对文件头按位

与，再判断 (file_header & mask) == magic，若匹配则由该规则指定的解释器来运行该文件。

（如果不容易理解参照IP地址和子网掩码来计算网段的方式进行理解）

还会有一个额外的问题

在choot环境下，也需要qemu-user的可执行文件、qemu-uesr依赖到的动态链接器、动态库。虽
然可以提前将这些放进目标根目录下，但仍然不是很方便

这个问题的解决

使用 qemu-user-static ，它是静态链接的可执行文件，不会依赖到额外的动态链接器、动态链接
库。

binfmt_misc的规则中允许设置一个F标志(fix binary)，其原理是在注册解释器时不仅仅是登记解释
器的路径，内核会将这个解释器载入内核中（实际上是持有fd），即使在chroot环境中，解释器路
径不存也不影响，因为内核已经提前将解释器载入到内核中，无需依赖解释器的路径就能执行解释

器。

binfmt_misc示例

在这个例子中

F - fix binary

The usual behaviour of binfmt_misc is to spawn the binary lazily when the misc

format file is invoked. However, this doesn’t work very well in the face of mount

namespaces and changeroots, so the F mode opens the binary as soon as the

emulation is installed and uses the opened image to spawn the emulator, meaning

it is always available once installed, regardless of how the environment changes.

:qemu-

riscv64:M::\x7f\x45\x4c\x46\x02\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x

00\xf3\x00:\xff\xff\xff\xff\xff\xff\xff\x00\xff\xff\xff\xff\xff\xff\xff\xff\xfe\x

ff\xff\xff:/usr/libexec/qemu-binfmt/riscv64-binfmt-P:OPF

af://n3249

字段 值 解释

magic \x7f\x45\x4c\x46\x02\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\xf3\x00
参考ELF文件头
部

mask \xff\xff\xff\xff\xff\xff\xff\x00\xff\xff\xff\xff\xff\xff\xff\xff\xfe\xff\xff\xff
参考ELF文件头
部

interpreter /usr/libexec/qemu-binfmt/riscv64-binfmt-P
解释器路径，实
际指向qemu-
riscv64-static

flags OPF

flags

P: 将解释器路径作为argv[0]，然后把原始命令作为额外的参数传给解释器

O: 内核打开要被解释的目标程序，通过fd的方式直接传递给解释器。如果直接传文件可能会出现遇
到只有可执行权限没有读权限，但无法运行的情况。

C: 将进程凭据按照被执行的二进制来计算，而不是根据模拟器的二进制来计算。模拟执行sudo/su
等依赖于SUID/SGID的程序来说需要设置。

F: 将解释器直接加载到内核中，启动时无需通过解释器路径去启动。

到这里，我们已经满足了直接在chroot环境中或mount namespaces环境中无感使用qemu-user-static
的准备工作

可以直接执行riscv64的elf文件，无需手动调用qemu解释器程序。内核自动通过binfmt_misc机制
识别哪些文件由哪个解释器执行

通过binfmt_misc的F标志，将解释器加载到内核中，即使在chroot/mount namespaces环境下找
不到解释器路径，也不妨碍解释器执行

qemu-user采用静态链接，不依赖任何用户态的运行时依赖，保证在chroot/mount namepsaces
下可以正常工作

与docker的配合使用
准备

在Ubuntu的开发机上，我们可以直接使用

来安装各种架构的qemu解释器，并自动设置binfmt_misc。

验证

其他安装方式

既然qemu-user-static是一组静态的可执行文件，并且在设置了F标志时它们只需要注册到内核中，而不
需要在使用它的进程的文件系统视角下能找到它。

所以我们还可以考虑直接通过 docker 直接安装这一组解释器到内核中

这样一来，即使你的发行版上找不到 qemu-user-static 软件包，也可以通过docker容器来安装qemu-
user-static二进制到内核中

qemu-user-static容器镜像的制作方法

multiarch/qemu-user-static https://github.com/multiarch/qemu-user-static

xfan1024/qemu-user-static https://github.com/xfan1024/qemu-user-static

apt-get install qemu-user-static

$ docker run --rm -it xfan1024/openeuler:24.03-x86_64 uname -m

x86_64

$ docker run --rm -it xfan1024/openeuler:24.03-aarch64 uname -m

WARNING: The requested image's platform (linux/arm64) does not match the detected

host platform (linux/amd64/v4) and no specific platform was requested

aarch64

$ docker run --rm -it xfan1024/openeuler:24.03-riscv64 uname -m

WARNING: The requested image's platform (linux/riscv64) does not match the

detected host platform (linux/amd64/v4) and no specific platform was requested

riscv64

docker run --rm --privileged multiarch/qemu-user-static # host支持 x86-64

docker run --rm --privileged xfan1024/qemu-user-static # host支持 x86-

64/arm64/riscv64，如果在MACOS(M系列CPU)中使用，可以使用这个

af://n3320
https://github.com/multiarch/qemu-user-static
https://github.com/xfan1024/qemu-user-static

制作openEuler-riscv64的容器

详细制作方法可参考

从零制作docker镜像：openEuler(riscv64) https://zhuanlan.zhihu.com/p/636350939

我自行维护了openeuler多种架构的容器镜像，可以直接取用

xfan1024/openeuler https://hub.docker.com/r/xfan1024/openeuler

先从一个本机架构的镜像出发，作为目标架构的根文件系统准备环境

FROM openeuler/openeuler:24.03-lts AS build

注意 --forcearch riscv64 与 --installroot /target

当使用 --forcearch riscv64 时，需要借助qemu-user-static的能力来做安装工作

Force the use of an architecture. Any architecture can be

specified. However, use of an architecture not supported

natively by your CPU will require emulation of some kind.

This is usually through QEMU

RUN dnf --setopt=install_weak_deps=False --releasever 24.03LTS --forcearch

riscv64 --installroot /target \

 install -y coreutils rpm dnf yum bash findutils procps tar && \

 dnf clean all --installroot /target && \

 rm -rf /target/var/cache/yum && \

 rm -rf /target/var/log/* && \

 rm /target/var/lib/dnf/history.sqlite-*

从一个空白镜像出发，将build镜像中的/target目录作为当前镜像的根目录

FROM --platform=linux/riscv64 scratch

COPY --from=build /target /

CMD ["/bin/bash"]

af://n3340
https://zhuanlan.zhihu.com/p/636350939
https://hub.docker.com/r/xfan1024/openeuler

快速移植开发板系统
文件系统制作

镜像制作

mkimage.sh

这个脚本需要xfan1024/genimage的容器中执行，也就是说创建可启动镜像的过程也是在一个容器化的
环境中完成的。

使制作镜像的工具不必在开发机中直接安装，也避免了开发机环境不一致导致脚本执行失败。

FROM --platform=linux/riscv64 xfan1024/openeuler:24.03-lts-riscv64

RUN dnf install -y kernel linux-firmware dracut grub2 grub2-efi-riscv64-modules \

 dbus NetworkManager systemd-timesyncd \

 && systemctl enable systemd-timesyncd \

 && echo "root:openEuler12#$" | chpasswd

#!/bin/bash

NOTE: this file used in docker container

don't execute it directly

-- xiaofan

set -xe

now we are in /work

/work/rootfs.tar mounted from host (read only)

/work/board mounted from host (read only)

/work/output mounted from host (read/write)

/work/rootfs is temporary directory, store all files in rootfs partition

/work/efi is temporary directory, store all files in efi partition

export GRUB_DISABLE_OS_PROBER=true

chroot_prepare() {

 mount --bind /dev $1/dev

 mount --bind /proc $1/proc

 mount --bind /sys $1/sys

 mount -t tmpfs tmpfs $1/tmp

}

chroot_cleanup() {

 umount $1/dev

 umount $1/proc

 umount $1/sys

 umount $1/tmp

}

mkdir -p rootfs

tar -C rootfs -xf rootfs.tar

ESP_UUID=0045-5350

ROOT_UUID=78662d6f-706f-6570-6f72-742d726f6f74

af://n3352

genimage.cfg

rm -f rootfs/.dockerenv

rm -f rootfs/etc/resolv.conf

rm -f rootfs/etc/fstab

cat >rootfs/etc/fstab <<EOF

UUID=$ROOT_UUID / ext4 defaults 0 1

UUID=$ESP_UUID /boot/efi vfat defaults 0 2

EOF

echo "oe2403lts-rv64" >rootfs/etc/hostname

mv rootfs/boot/efi efi

mkdir rootfs/boot/efi

cp efi/EFI/openEuler/grubriscv64.efi efi/EFI/BOOT/BOOTRISCV64.EFI

genimage --config board/genimage.cfg --input . --rootpath rootfs

LOOPDEV=$(losetup -fP --show images/oe2403lts-rv64-qemu.img)

mkdir -p mnt

mount ${LOOPDEV}p2 -o ro mnt

mount ${LOOPDEV}p1 -o rw mnt/boot/efi

chroot_prepare mnt

chroot mnt grub2-mkconfig -o /boot/efi/EFI/openEuler/grub.cfg

chroot_cleanup mnt

umount mnt/boot/efi

umount mnt

losetup -d $LOOPDEV

compress and set ownership (if provided)

qemu-img convert -f raw -O qcow2 images/oe2403lts-rv64-qemu.img output/oe2403lts-

rv64-qemu.qcow2

cp board/{*.fd,start_vm.sh} output/

if [-n "$HOSTUID" -a -n "$HOSTGID"]; then

 cd output/

 chown -R $HOSTUID:$HOSTGID oe2403lts-rv64-qemu.qcow2 RISCV_VIRT_CODE.fd

RISCV_VIRT_VARS.fd start_vm.sh

fi

image esp.vfat {

 vfat {

 label = "ESP"

 extraargs = "-i 00455350"

 files = {

 "efi/EFI",

 }

 }

 size = 1GB

}

image rootfs.ext4 {

 ext4 {

 label = "rootfs"

示例项目开源

xfan1024/mkoervimg https://github.com/xfan1024/mkoervimg

xfan1024/openeuler-d1 https://github.com/xfan1024/openeuler-d1

xfan1024/openeuler-rk3568-rock3a https://github.com/xfan1024/openeuler-rk3568-rock3a

 features = "filetype"

 use-mke2fs = true

 extraargs = "-U 78662d6f-706f-6570-6f72-742d726f6f74"

 }

 size = 10G

}

image oe2403lts-rv64-qemu.img {

 hdimage {

 partition-table-type = "gpt"

 }

 partition esp {

 offset = 2M

 image = "esp.vfat"

 partition-type-uuid = U

 bootable = true

 }

 partition rootfs {

 image = "rootfs.ext4"

 partition-type-uuid = L

 }

}

https://github.com/xfan1024/mkoervimg
https://github.com/xfan1024/openeuler-d1
https://github.com/xfan1024/openeuler-rk3568-rock3a

软件包编译
几乎所有的发行版的软件包都可以在这个发行版的系统环境下构建（例如openEuler，当然也有例外，如
OpenWRT）。

我们可以直接利用qemu-user + docker来搭建这个发行版的容器镜像制作对应的编译环境。

实现在开发机上以用户态模拟的方式，方便的构建各种架构各种发行版的软件包。

曾经一些riscv64的构建平台基础设施使用的是qemu-system环境模拟的完整系统，

这种方式进行模拟的话理论上能获得更好的兼容性，其代价是更慢的编译性能。

af://n3372

	内容简介
	QEMU常见的三种工作场景
	模拟执行方式的性能测试
	解释执行静态程序
	解释执行动态程序
	linux的binfmt_misc机制
	与docker的配合使用
	制作openEuler-riscv64的容器
	快速移植开发板系统
	软件包编译

